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Abstract 

Nations are working hard to find solutions to the 

growing societal issue of farmer suicides. Uncertainty 

and volatility in product pricing caused by changing 

market circumstances are the main reasons why most 

farmers end their lives because they can't sell their 

goods at the profit levels they wish. In this research, 

we introduce PECAD, a deep learning algorithm that 

accurately predicts future produce prices by analysing 

previous pricing and volume trends. This method aims 

to resolve the problem of produce price uncertainty 

and avoid farmer suicides. Though earlier research has 

offered ML algorithms for produce price prediction, 

these have two major flaws: (i) they use classical ML 

prediction models, which don't always work well with 

spatio-temporal datasets, and (ii) they don't take into 

account the spatial-temporal dependence of future 

prices on past data. In order to address these 

limitations, PECAD has three main contributions: 

first, we use an official Indian government website to 

collect real-world daily price and (produced) volume 

data for various crops over an 11-year period; second, 

we use state-of-the-art imputation techniques to pre-

process this raw dataset and account for missing data; 

and third, we propose a novel wide and deep neural 

network architecture that consists of two separate 

convolutional neural network models trained for 

pricing and volume data, respectively. We find that 

PECAD significantly reduces the root mean squared 

error (RMSE) compared to state-of-the-art baselines 

(by 25% less) in our simulations, making it the 

superior technique. In the Indian state of Jharkhand, 

where we collaborate, a non-profit organisation is 

looking at the possibility of using PECAD to reduce 

the number of farmer suicides. 

 

Introduction 

Suicide rates among small-scale farmers have risen 

significantly in the past twenty years, 

disproportionately in developing nations like Pakistan, 

India, and others, as a result of agrarian distress and 

associated socio-economic issues like debt, loss of 

agricultural income, etc. Approximately 300,000 

farmers in India have taken their own lives. ever since 

1995. In the Indian state of Maharashtra, 60,000 

farmers took their own lives in 2014, with a daily 

average of 10 (NCRB 2019). Crop failures, poor farm 

production, not being able to make a profit, inefficient 

cold chain management leading to wasted agricultural 

products, inadequate irrigation facilities, and 

overwhelming debt are just a few of the many issues 

that might cause farmers to take their own lives. One 

of the main causes of farmer suicides is the 

unpredictability of agricultural pricing and markets. 

For example, changes in global market circumstances 

may cause local prices of agricultural goods to 

fluctuate wildly (Barik 2018). This price volatility 

makes it impossible for small-scale farmers with debts 

to determine when and where to sell their crops, as 

they lack the sophisticated technical tools and 

understanding of global market circumstances that 

larger-scale farmers have. Many of these farmers end 

their lives because they are unable to repay their 

agricultural debts and obtain the profits they seek from 

their produce (Panagariya 2008).  
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(a) Farmers Protesting by (b) Huge Demand for Loan 
Throwing their Unsold Produce Waiver at Farmer Rally 

Figure 1: Agrarian Distress in India 

 

As a result, the problems faced by these farmers must 

be addressed promptly. Thanks to recent 

developments in ML approaches, learning algorithms 

may now be used effectively to many societal 

challenges (Tambe and Rice 2018). In order to address 

the issues mentioned before, this study suggests using 

AI and ML to find the answer to the following 

question: Is it possible to forecast the future price of 

agricultural produce at various marketplaces using 

data-driven methods that take into account past pricing 

and volume patterns? After that, these AI/ML methods 

can  

use it to make smart decisions about when to sell their 

crops; for instance, based on projected prices, farmers 

may plan ahead and sell their crops at the peak of 

profit. To get to the bottom of this mystery, we need 

to solve a number of problems. To begin, training is 

made more difficult by the fact that the current 

datasets on price patterns1 are quite sparse, meaning 

they include many missing items. Secondly, it is 

important to create prediction models that can 

explicitly account for the spatio-temporal dependence 

between past prices and future produce prices. For 

example, the price of tomatoes in August 2019 could 

be influenced by their price in August 2018, and prices 

at nearby markets could be similar to those at faraway 

places. We validate this in our experiments, but 

previous work on produce price prediction algorithms 

(e.g., decision trees) often fails to account for the 

spatio-temporal dependence of future prices on past 

data. Additionally, these algorithms rely on classical 

ML prediction models, which do not take this 

dependence into account. Because of these flaws, 

these procedures aren't very practical or accurate.  

In order to overcome these limitations, we present 

PECAD, a new neural network architecture for 

predicting agricultural product prices in the future.  

 

PECAD stands for Price Estimation for Crops using 

the Application of Deep Learning. The following 

innovative additions are made by PECAD to address 

the inadequacies of earlier work. An official Indian 

government website, Agmarknet.gov.in1, was used to 

compile the actual pricing and (produced) volume of 

various commodities at 1,350 agricultural markets in 

India from 2008 to 2018. Second, in order to prepare 

this raw information for analysis, PECAD employs 

cutting-edge imputation (and other) methods to fill in 

any gaps in the data. Finally, PECAD takes this data 

and suggests a new way of building neural networks 

that combines deep learning with broad linear models 

(Cheng et al., 2016). Nevertheless, PECAD employs 

an innovative approach by combining two distinct 

convolutional neural network (CNN) models—one for 

pricing data and the other for volume data—for the 

crop in question. These CNN models are then fed into 

the wide linear model, rather than cross-product 

feature transformations. While baseline approaches 

obtain a coefficient of variance that is 25% lower than 

PECAD, our simulation findings demonstrate that 

PECAD significantly outperforms them. This 

highlights the importance of  

while processing data collected by remote sensing. 

But their method depends on collecting field photos 

from satellites, which may be costly in 

underdeveloped nations with limited resources. To 

forecast future rates, our team uses publicly accessible 

pricing and volume data. Then, a software and 

hardware solution was suggested by (Chen, Nowocin, 

and Marathe 2017) to lessen agricultural produce 

spoiling. Our work is most closely connected to that 

of (Ma et al. 2019), as they, too, use the same data 

source to construct a model for predicting crop 

prices1. We demonstrate in our studies that their low 

performance accuracy is due to their failure to take use 

of the spatio-temporal features of price and (produced) 

volume data for different crops. We find spatio-

temporal relationships in price and volume data by 

using certain kinds of convolutional neural networks.  

Dataset Construction 

Data Collection There are two main databases that we 

use. A website maintained by the Indian government's 

Ministry of Agriculture and Farmers Welfare, 
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Agmarknet.gov.in1, provides us with all of the raw 

data we need on agricultural products (produce). This 

website has twelve years' worth of daily pricing and 

volume data from thirteen hundred and fifty-two 

agricultural marketplaces throughout India. Using 

data gathered from all marketplaces over an 11-year 

period (2008–2018), we analysed the price and 

volume of three crops: brinjal, tomatoes, and chilies. 

We successfully scraped the market data from this 

website using a multi-process crawler script that was 

installed on two cloud servers. It took one week to 

finish this tyre scraping operation. Furthermore, we 

supplement this information by gathering geographic 

features, such as the exact location of each agricultural 

market. Since crop prices in nearby marketplaces tend 

to be comparable, we gather this information to record 

the spatial correlations between these markets. We use 

the Google Maps API to extract the geometric 

coordinates (latitude and longitude) for every market 

in the Agmarknet.gov.in database as the website does 

not provide any geographical information about the 

1352 marketplaces that are there. In addition, we use 

sparse one-hot encoding vectors to capture this 

characteristic, and we provide a unique ID to each 

market and crop. 

Data Preprocessing Let M denote the set of all 1352 markets in our dataset, C denote the set of produce types (we collect 

data for three crops, so C = 3), and T de- note the set of all dates (timesteps) for which we have price and volume entries. 

For each crop c ∈ C, we define Pc andV c as M × T price and volume matrices (respectively). Forportance of explicitly 

modeling the spatio-temporal depen-each m ∈ M and t ∈ T , Pc indicates the price of crop c dence of future prices on past 

data inside our ML algorithm. in market m on day t, whereas V c    indicates the volume of Our work is done in collaboration 
with a non-profit agency that works on preventing farmer suicides in the Indian state of Jharkhand (name withheld for anonymity), 
and PECAD is currently being reviewed by them for potential deployment. Related Work We discuss prior AI/ML research that 
as- sists in alleviating agrarian distress. (You et al. 2017) pro- posed deep Gaussian processes to predictcrop yields us-crop 

c (in metric tonnes) that arrived in market m on day t. 
Unfortunately, the Pc  and V c matrices for each crop c C (which we construct after data collection) are ex- tremely sparse, 

i.e., they have several missing entries. On Agmarknet.gov.in, these missing entries are created due to a variety of reasons, e.g., a 

particular market might have been closed on a given day t  T , no produce was sold in a mar- ket on a given day, or simply the 
data for that market was never recorded due to human errors. In particular, we ob- 

Table 1: Features and notations in our paper. 

 

Feature Explanation Notation 

Market 
Crop 
Price 
Volu

me 

Geo 

location 

Unique identifier for each market 
Unique identifier for each crop 
Denotes the price of crop c in market m on 

day t Denotes the volume of crop c in market 

m on day t 
Denotes the geographical latitude/longitude of 
market m 

m ∈ 
M c 
∈
c 

C 
Pm,t 

V c 
m,t 

[latm, lonm] 
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Consider that there is a severe lack of data for some 

markets; that is, there are relatively few legitimate 

(non-empty) data points for certain markets, and the 

data from these markets does not contribute much to 

the learning process as a whole. Hence, we exclude all 

markets from the data set if their validation data is 

missing for more than 10% of the days in T. The next 

step is to fill in the remaining blanks using efficient 

data imputation techniques. Naive imputation 

techniques, such as hot-deck and mean substitution, 

cannot be used since the crop price and volume data is 

sparse. Nevertheless, in order to fill in the gaps in our 

dataset, we use SoftImpute, a cutting-edge 

collaborative filtering approach (Hastie et al., 2015), 

which takes into account the spatial correlations 

between crop prices (and volumes) at nearby 

marketplaces.Each crop C has fully filled Pc and V c 

matrices after data imputation. The inability of most 

sequential neural networks to learn long-term 

temporal dependencies is due to vanishing or 

exploding gradients (Sutskever, Vinyals, and Le 

2014). To circumvent this, we compress the Pc and V 

c matrices by treating a time window of w days as a 

single time step. Specifically, we average crop prices 

and quantities for each non-overlapping consecutive 

block of w days in order to get compressed 1 minus 

(t+1)w Deep and Wide Networks Figure 2 shows the 

wide and deep network model, which is made up of 

deep neural networks and jointly trained wide linear 

models. This model is great for large-scale regression 

problems with sparse inputs, like features with a lot of 

possible values, like categorical features (Cheng et al. 

2016). Since our price prediction dataset includes 

feature vectors for identifying markets and crops that 

are very sparse and encoded using one-hot encoding, 

the broad and deep learning paradigm is a perfect fit 

for PECAD. As seen in Figure 2 (right), the deep 

component is a feed-forward neural network. In the 

first layer of the deep component, sparse one-hot 

encoding vectors with large dimensions are 

transformed into dense real-valued vectors with low 

dimensions; these are called embedding vectors. The 

neural network's hidden layers are then fed these dense 

embedding vectors (see to the right side of Figure 2 

for details).  

Figure 2 (left) shows the broad component as a 

generalised linear model (GLM) using the equation y 

= wT x + b. A vector of d characteristics is represented 

by x = [x1, x2,..., xd], the model parameters are w = 

[w1, w2,..., wd], the bias is b, and y is the prediction. 

Crucially, the broad linear model's feature vector x 

incorporates non-linearity derived from cross-product 

transformation features that record interactions 

between the input binary characteristics.  

Data Characteristics Our final dataset has 40000 data- 
points, each consisting of a feature vector and a continuous 
label. A single feature vector for the tth time-step at market 
m consists of historical price and volume pairs for the last n 

time-steps from our compressed P̂ c  and V̂ c  matrices, along 
with market latitude/longitude coordinates, and market and 
crop identifiers. The ground-truth label (which we want to 
predict) is the price of crop c at market m on the (t + 1)th 
time-step (i.e., the crop price in the next time-step). Table 1 
describes a list of all features in our dataset. 

 

Deep Learning Algorithm 

Our innovative deep learning architecture, PECAD, is 

based on broad and deep networks, as described by 

Cheng et al. (2016). Our PECAD design is based on 

broad and deep networks, as well as temporal 

convolutional networks (TCN) (Bai, Kolter, and 

Koltun 2018). To ensure completeness, we first 

provide a brief description of these networks.  

Temporal Convolutional Networks According to Bai, 

Kolter, and Koltun (2018), the TCN model handles 

sequential data using convolutional layers. Like 

regular RNN models, TCNs may accept input 

sequences of any length and produce output sequences 

of the same length. The TCN model achieves this by 

using a 1D fully-convolutional network (FCN) design. 

In this design, the input layer and each hidden layer 

have the same length, and to ensure that following 

layers have the same length, a zero padding of length 

(filter size 1) is added. To further guarantee that no 

information leaks from the future into the past, TCN 

employs causal convolutions, where an output at time 

t is convolved exclusively with components from time 

t and earlier in the prior layer. Lastly, TCN employs 

dilated convolutions (which causes the receptive field 

of convolutional filters to grow exponentially) to 

extract correlations from long-term sequences. TCN 

has shown to be more effective than cutting-edge 

recurrent architectures like LSTM on a variety of tests 

and benchmarks. Because TCN has so many useful 

features, we include it as a foundational element in 

PECAD.  
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Figure 2: Wide and Deep Network Architectures (Cheng et al. 2016) 

 

PECAD: Deep Learning Architecture 

After this, we will go into PECAD's deep learning 

architecture and its wide-ranging features. While 

PECAD's deep neural networks generalise to 

previously undiscovered feature interactions via low-

dimensional embeddings, the broad linear models 

memorise long-term sequential pricing/volume 

information. Keep in mind that in conventional deep 

and wide networks, the wide component's feature 

vector x contains cross-product transformation 

features (Cheng et al. 2016). Standard wide and deep 

networks struggle to learn from the produce price 

prediction issue because the number of characteristics 

used grows exponentially with the duration of the 

price/volume history being considered. Instead of 

adding an exponential number of cross-product 

transformation features, PECAD trains two 

independent TCN models for price and volume, which 

adds non-linearity to the broad component (GLM). 

This is a significant innovation within PECAD. 

Through our tests, we have shown that the broad 

component model (GLM) benefits from having the 

TCN models as input. We begin with a brief summary 

of PECAD's overall architecture. We then go on to 

explain PECAD's embedding layer and the inner 

workings of its deep and broad networks in depth. 

Architecture Overview You can see the whole PECAD 

architecture in Figure 3. Figure 3, on the left, shows 

the results from the deep network, and on the right, 

shows the results from the broad network (GLM). In 

order to train separate TCN models that use raw 

historical price and volume patterns as input 

(respectively) and construct complicated non-linear 

features that compose the feature vectors for the wide 

network, we avoid using the raw input features in the 

wide network GLM's feature set. In contrast, the deep 

network's feature vector contains market and crop 

embedding vectors, geographical characteristics of 

agricultural marketplaces (such as geo-graphical 

latitude and longitude coordinates), and The sparse 

high-dimensional datapoints, which include market 

and crop one-hot encoding vectors, are transformed 

into low-dimensional embedding vectors ve,i = W · vi 

by applying an embedding layer. Here, ve,i ∈ Rde 
represents the ith datapoint's embedding vector and vi 

Rdx represents the ith datapoint with one-hot encoding 

(de < dx). To reduce loss as much as possible, the 

embedding parameter matrix W RdeÏdx is first set up 

at random and then updated while the model is being 

trained. 

PECAD Deep Network A feed-forward deep neural 

network (DNN) is what the deep network uses to 

process the low-dimensional embedding vectors. The 

DNN has three fully connected hidden layers that are 

rectified linear units (ReLUs). One of these layers is 

the (l + 1)-th hidden layer, which is represented as 

hl+1 = ReLU(Wlhl + bl). The weights and bias for the 

l-th fully-connected layer are bl Rdl+1×dl and Wl 

Rdl+1×dl, respectively. 

PECAD Wide Network   A GLM receives its output 

from two TCNs in the broad network, which were 

trained independently on sequential price and volume 

data, respectively. The standard practice is to combine 

several time series variables into one TCN network; 

for example, a price and volume TCN model might be 

trained using the same data. Nonetheless, PECAD 

teaches two separate TCN models to memorise 

consecutive price and volume data over the long term. 

In our studies, we compare the predictive performance 

of PECAD—which uses two independent TCN 

models—against that of a version of PECAD—

PECAD-Single TCN—in Table 2. This allows us to 

experimentally support the decision to use such a 

configuration. 
Training Procedure We create a training set and a test set 

by dividing the data using time. The training data consists 

of price and volume records from 2008 to 2016, in addition 

to the other characteristics listed in Table 1. Utilising this 

training data, we educate PECAD. The test set consists of 

data collected between 2017 and 2018. Last but not least, 

we use an L2 to process the complex non-linear feature 

vectors that were input into the broad network (refer to 

Figure 3). As a last point, the loss  function,  
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i.e., L2 = 
Σn

 

 (ŷ  − ypredicted)2
. 

wide and deep networks is combined and fed into a single 
fully connected layer, which outputs a prediction of the pro- 
duce price on the next day. 

Embedding Layer We assign unique identifiers for each 

of the M = 1352 markets and C = 3 crops, and rep- resent 
this feature using extremely sparse one-hot encoding feature 

vectors, which leads to poor learning performance. 

 

Experimental Evaluation 
An Amazon Machine Image (AMI) server running 

Ubuntu version 24.0 was used for all tests using deep 

learning. All of our experiments make use of the 

feature space in our dataset, which includes price and 

volume data over the previous n = 360 days. The 

performance of all deep learning models, including 

PECAD and others, is evaluated after 150 epochs of 

training. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4: Convergence Rate & Ablation Results for PECAD 
 
 
 

 Figure 3: Architecture of our deep learning model 

 

hit 20 balls each inning. We use the "coefficient of 

variation" (i.e., the root mean squared error (RMSE) 

divided by the mean produce price) to compare the 

predictive performance of various algorithms, rather 

than RMSE values, which cannot be meaningfully 

compared across different models to ascertain which 

model offers better outcome predictions (Sørensen 

2002). 

Baselines Two traditional ML models, random forests 

(RF) and gradient tree boosting (GTB), are used for 

comparison. Since these two baselines are the most 

effective algorithms for predicting the prices of 

product, we utilise them (Ma et al. 2019). There are 

four deep learning models that we also compare 

against; these models make use of spatio-temporal 

features: (i) PECAD using a single TCN for both price 

and volume sequences (PECAD-Single TCN); (ii) 

attention-LSTM networks (Sutskever, Vinyals, and Le 

2014); (iii) standard wide and deep networks 

(Standard Wide & Deep) with cross-product 

transformation features (Cheng et al. 2016); and (iv) 

standard (TCN) model. 

Predictive Performance In Table 2, we can see the 

performance of several ML models for brinjal, 

tomatoes, and chillis over three separate time frames 

(w=4,6, and 9 days). Consideration of the spatio-

temporal dependency of future product prices on 

previous data yields beneficial results, as shown in 

Table 2. When compared to traditional ML 

techniques, our deep learning models that do this task 

considerably improve the accuracy of produce price 

predictions. We see that deep learning models always 

have the lowest coefficient of variation (bold) for all 

crops and w values. Deep learning models outperform 

the two classic ML models by 12.5% when it comes 

to the coefficient of variance. 

 

 

 

 

 

 

Further, with a 25% decrease in coefficient of 

variation relative to their average case performance, 

PECAD substantially surpasses the other four deep 

learning models in Table 2. By achieving a 13% lower 

coefficient of variation, the work model (Cheng et al., 

2016) demonstrates the limits of using traditional 

cross-product transformation characteristics in price 

prediction when compared to the industry-standard 
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deep and wide net. Differences in performance of 

13.5% between PECAD and PECAD-Single TCN 

demonstrate the benefits of training two separate TCN 

models in the PECAD architecture. As can be seen 

from the image, PECAD is the go-to programme for 

projecting product prices into the future. 
Convergence Results   The rate of convergence of PECAD is 

examined in Figure 4a for various time window widths, 

averaging all three crops. Mean squared error (MSE) training loss 

is shown on the Y-axis, while rising time epochs are shown on 

the X-axis. It is evident from this image that PECAD reaches 

locally optimum solutions quite fast. 

Ablation Studies We investigate how different 

components of our feature space affect PECAD's 

prediction accuracy. As a result, we try out several 

ablations of our PECAD model that we get by 

gradually removing important features from the 

feature space. For each of the past n = 360 days, we 

mask the price and volume inputs to construct ablated 

models. Ablating various regions of the feature space 

results in the effects seen in Figure 4b. To get an 

ablated model, the X-axis displays the day for which 

the price/volume data are masked. Across all three 

crops, the average % increase in MSE loss due to 

ablation is shown on the Y-axis. For instance, in the 

PECAD model trained with a 4-day time frame, the 

MSE loss rises by 5% when the most recent day's price 

and volume inputs are masked (X-axis label = 1). 

Figure 4b reveals an unexpected finding: the MSE loss 

increases dramatically when price/volume entries of 

days in the past around days 100 to 150 are masked, 

suggesting that these days have a major role in 

forecasting future product prices, and this holds true 

across all three time window widths. The fact that our 

three crop varieties—brindaal, tomato, and chilli—

have set planting dates each year and an average 

growing duration of three to four months (DARD 

2019) suggests that new supplies of food are 

introduced to the market every three to four months 

(90 to 120 days)—which might account for the 

observed outcome. Therefore, entries for fresh product 

deliveries recorded three to four months ago, together 

with their accompanying volumes and prices, may be 

useful indicators of crop prices for the day after.  

 

 4 Days/90 Cells 6 Days/60 Cells 9 Days/40 Cells 
Brinjal Tomato Chilli Brinjal Tomato Chilli Brinjal Tomato Chilli 

RF 21.12 22.88 19.45 23.47 38.48 21.60 24.50 44.30 23.54 

GTB 21.38 20.85 18.99 22.88 26.18 18.58 23.64 31.55 20.36 
Attention-LSTM 19.88 20.52 17.49 21.98 24.36 18.44 21.00 31.94 21.04 

TCN 20.59 19.87 17.36 54.42 33.25 27.69 27.59 98.02 81.83 

Standard Wide & Deep 23.63 24.47 19.07 24.34 28.22 18.67 27.36 34.29 21.10 

PECAD - Single TCN 21.90 23.50 17.77 29.43 30.86 20.21 26.26 33.65 20.46 
PECAD 19.64 21.62 17.07 21.14 24.20 17.65 21.75 28.46 19.31 

Table 2: Coefficient of Variation of different ML models with varying time window sizes 

 

Implementation Challenges & Conclusion 

When non-profit organisations assisting farmers with 

debts install PECAD, there are a few issues with 

implementation that must be addressed. To start, past 

weather patterns may influence future crop 

availability (and, by extension, crop pricing), thus 

including them into PECAD's prediction performance 

might be a good idea. As a result of the superior 

accuracy of physical models, deep learning 

approaches are hardly used for weather modelling in 

the actual world. As a result, physical weather 

prediction models should be connected with PECAD 

(in future study). Moreover, farmers with low levels 

of education may be suspicious of advanced deep 

learning methods (like PECAD) that attempt to 

forecast future commodity prices. To allay these 

concerns and encourage participation, the agencies 

involved in this programme should launch public 

awareness efforts. On top of that, purchasing 

sophisticated computer gear (to teach and operate 

PECAD) is usually not a top priority for non-profit 

groups due to their low finances. As a result, we advise 

the agencies to utilise PECAD independently by 

implementing it as a web service. Last but not least, 

PECAD is only one piece of the jigsaw that requires 

fixing in order to stop farmer suicides. If long-term 

crop price and volume trends are not available, for 

instance, PECAD's implementation will fail 

miserably. Although this data is accessible for Indian 

markets via Agmarknet.gov.in, no analogue data 

archives exist for other emerging nations.Using 

historical pricing and volume trends, this article 

introduces PECAD, a deep learning system that 

accurately predicts future crop prices. Prior ML 

systems for crop price prediction suffered from serious 
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flaws due to their failure to take into account the 

spatial-temporal dependency of future prices on 

historical data. To address these problems, PECAD 

suggests a new deep learning architecture that uses 

two convolutional neural network models—one for 

price data and the other for volume data (pertaining to 

the crop in question). By reducing the coefficient of 

variation by 25% compared to state-of-the-art baseline 

approaches, PECAD beats them in our simulation 

results. One of our partners is a non-profit in the Indian 

state of Jharkhand whose mission is to reduce the 

number of farmer suicides; they are now considering 

using PECAD in their work.  
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